X-RAY AND INFRARED STUDIES OF ZIRCON METAMICTIZATION ## J.A. Woodhead G.R. Rossman L.T. Silver (all at: Div. of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125). Unit cell dimensions in Ceylon zircons increase with α -dosage and diffraction peaks broaden and weaken (Holland and Gottfried, 1955). IR absorption band intensities (2.5-40µm) show corresponding decreases and polarized spectra (//and | to the c-axis) show loss of anisotropy with increased α -dosage. Each of the observed structural changes may be used as a quantitative measure of zircon metamictization. For Ceylon zircons having total α -dosages >4x10¹⁵ α /mg, x-ray powder patterns show no crystal structure; zircon lattice vibrations in the far infrared are virtually absent; and polarization anisotropy is lost. Intensity of the internal SiO_4^{4-} vibration bands decreases with increasing α -dosage up to $\sim 4 \times 10^{15}$ α/mg where there is an abrupt change in slope. Intensities decrease more slowly at greater α -dosages and the bands continue to broaden (Wasilewski et al, 1973). For the Ceylon zircon suite all crystallographically oriented Zr-O bonds (on which lattice vibrations, anisotropy, and x-ray pattern depend) appear destroyed at a total α -dosage of 4×10^{15} α/mg . Higher α -doses continue to effect the metamict zircon by damaging and distorting the SiO_4^{4-} tetrahedra and their micro-environment. Studies on this and other suites reveal a wide range in total water and hydroxide content of natural zircons with no apparent correlation between hydration and metamictization. Band positions, width and anisotropy in the O-H stretching region show that both H_2O and OHT can occur, either together or separately, and that they are crystallographically oriented. Anisotropy in the water region also decreases with increasing α dosage.