## CARBONATE FORMATION ON MARS: IMPLICATIONS OF RECENT EXPERIMENTS. S.K. Stephens<sup>1</sup>, D.J. Stevenson<sup>1</sup>, L.F. Keyser<sup>2</sup>, and G.R. Rossman<sup>1</sup>, <sup>1</sup>Division of Geological and Planetary Sciences, 170-25, California Institute of Technology, Pasadena, CA 91125, <sup>2</sup>Earth and Space Sciences Division, 183-901, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.

Summary: Could carbonate formation have reduced Martian  $CO_2$  pressure from >1 bar to the present 7 mbar in 3-4 b.y.? Since our previous report [1], we have performed additional experiments which monitor the uptake of  $CO_2$  by powdered basalt. Together with results from post-experimental infrared spectroscopy, these new data support the hypothesis that the kinetics and mechanism of carbonate formation under low-T and low- $P(CO_2)$  conditions (-25°C and 100 mb) are amenable to storing significant amounts of Martian  $CO_2$  in carbonate minerals over geologic time. This claim requires that we verify that carbonate *is* formed in our experiments, and that we support a model involving something like log t behavior for  $CO_2$  uptake.

**Pressure-Drop Experiments:** A sensitive manometer recorded the pressure drop of  $CO_2$  due to uptake by powdered basalt (Kilauea tholeiite, ~98% glass) for periods of days to weeks [1]. (See also [2] for details of experimental procedure.) Runs were performed at warm (~22°C) and cold (-25°C) temperatures,  $CO_2$  pressures of 950, 100, and 34 mb, and H<sub>2</sub>O contents equivalent to 0-5000 monolayers. Results are shown below.





effect of  $CO_2$  dissolution in  $H_2O$  without any sample (scaled to 5000 monolayers) and may explain rapid uptakes before ~1 day. Curves then become ~linear.





Figure 2. Basalt (1.85  $m^2/g$ ) under cold conditions at 100 mb. As in Fig. 1, H<sub>2</sub>O content varies, and similar behavior is observed. Most H<sub>2</sub>O vapor has condensed onto grain surfaces at -25°C. A dry run (0 monolayers) shows only minor uptake after very rapid CO<sub>2</sub> adsorption. The two vapor experiments exhibit curves nearly linear in log t from ~1 to ~10 days, and extrapolation gives a tentative upper limit on CO<sub>2</sub> uptake for geologic timescales (see text).

Figure 3 (left). Basalt (0.65  $m^2/g$ ) under warm and damp conditions (1000 monolayers  $H_2O$ ).  $CO_2$  uptake after ~0.01 days at 100 mb is roughly half that at 944 mb. A sole experiment run at 34 mb yielded no signal (except fluctuations due to changes in lab temperature), suggesting a possible low-P limit for  $CO_2$  uptake under these conditions. Otherwise, we see from Figs. 1-3 that T and  $H_2O$  content influence  $CO_2$  uptake considerably more than  $P(CO_2)$ . Additionally, at least ~1 monolayer  $H_2O$  appears to be necessary for any reaction to occur.

(text continues overleaf)

XPS (X-ray Photoelectron Spectroscopy): If pressure-drop results are due to carbonate formation and deposition, then added phases should be detectable with suitably sensitive spectroscopic or microscopic techniques. Using XPS, in which electrons generated by incident X-rays allows quantitative identification of surface elements and chemical states from binding energy spectra, we analyzed both crystals of diopside (CaMgSi<sub>2</sub>O<sub>6</sub>) and chips of the same basalt glass used as powders in pressure-drop experiments. Both were exposed for 2 to 4 weeks to a 1-bar CO<sub>2</sub> atmosphere saturated with H<sub>2</sub>O vapor, and then compared with controls exposed to N<sub>2</sub>. Oxidized carbon, representing carbonate, would have been detected under XPS as a carbon signature shifted to higher binding energy relative to, e.g., adventitious or organic carbon. However, none was detected on either diopside or basalt, suggesting that any carbonate formation in pressure-drop experiments may be related to the surface or subsurface texture of crushed powders. We are presently using XPS to analyze powdered samples.

FTIR (Fourier Transform Infrared Spectroscopy): Infrared spectroscopy was used to test for added carbonate in experimental basalt powders. After pressure-drop runs under warm conditions at  $\sim$ 1 bar CO<sub>2</sub> with



H<sub>2</sub>O vapor, diopside and basalt were analyzed and compared with known carbonate spectra:

Figure 4. Ratioed spectra for basalt (corresponding to 15 monolayers  $H_2O$  on the previous page) and diopside (also warm, 1-bar, vapor conditions) are shown compared to a calcite transmission spectrum. Ratioing was done relative to control samples which were not subjected to experimental conditions (reflectance is in arbitrary units and the upper two curves are displaced for readability). Controls or dry-run powders would show flat ratioed spectra, expect for noise (e.g., silicate absorptions  $<1300 \text{ cm}^{-1}$ ), atmospheric signal (CO, band at 2350 cm<sup>-1</sup>), and water condensation on the detector (>2800 cm<sup>-1</sup>). We notice prominent absorptions for both diopside and basalt (at ~1500 and 1450 cm<sup>-1</sup>) which lie on or close to the principal calcite absorption (~1450  $cm^{2}$  or 6.9  $\mu$ m). There is a second absorption for diopside (~1200 cm<sup>-1</sup>) which may be due to a silicate reaction byproduct. The discrepancy between the ~1500 cm<sup>-1</sup> calcite absorption and the diopside spectrum may be due to a crystal structure other than calcite (e.g., aragonite) or to another carbonate (e.g., dolomite).

Absorptions at ~1450-1500 cm<sup>-1</sup> are very suggestive of added carbonate in both diopside and basalt. The apparent inconsistency of FTIR analysis and XPS results may be due to the difference in sampling depths of the two techniques (~1  $\mu$ m for IR and ~1 nm for XPS). Whatever is causing CO<sub>2</sub> to be stored in pressure-drop experiments and seen with IR may be deep enough that XPS is not seeing it at the surface of bulk samples.

Modeling and Implications for Mars: The apparent functional dependence of CO<sub>2</sub> uptake on ~ log t in pressure-drop experiments suggests a model for aqueous chemistry that involves reaction rate proportional to 1/t. A diffusive process (e.g., simple non-aqueous diffusion through a reaction rind) will give reaction rate  $\sim 1/t^{1/2}$ . However, reaction rate  $\sim 1/t$  is a natural outcome of a situation in which the source of a crucial reactant is a dissolving surface that can be encroached upon by deposition of the product. Thus, a scenario involving aqueous chemistry (perhaps as little as a monolayer of H<sub>2</sub>O), in which reaction rate is limited by available dissolving surface (yielding cations), yields log t behavior for P(CO<sub>2</sub>) after ~1 day. If such a model holds, it is interesting because it is extrapolatable to geologic timescales. For example, log t is such a weak function that, for the -25°C, 100 mb, 4 monolayers H<sub>2</sub>O case for basalt shown in Fig. 2, we can derive an upper limit for the CO<sub>2</sub> uptake: In 10<sup>12</sup> days (3-4 b.y.), a global regolith of basalt powder 100 m in thickness will take up ~10-100 mb. The log t behavior avoids the problem of extrapolating laboratory reaction rates directly.

References: [1] Stephens S.K. et al. (1993) LPI Tech. Rpt. 93-06, Part 1, 46-48. [2] Stephens S.K. et al. (1992) LPI Tech. Rpt. 92-04, 34-36.